演算法-ag真人国际官网
① 演算法的概念
演算法(algorithm)是解題的步驟,可以把演算法定義成解一確定類問題的任意一種特殊的方法。在計算機科學中,演算法要用計算機演算法語言描述,演算法代表用計算機解一類問題的精確、有效的方法。演算法 數據結構=程序,求解一個給定的可計算或可解的問題,不同的人可以編寫出不同的程序,來解決同一個問題,這里存在兩個問題:一是與計算方法密切相關的演算法問題;二是程序設計的技術問題。演算法和程序之間存在密切的關系。
演算法是一組有窮的規則,它們規定了解決某一特定類型問題的一系列運算,是對解題方案的准確與完整的描述。制定一個演算法,一般要經過設計、確認、分析、編碼、測試、調試、計時等階段。
對演算法的學習包括五個方面的內容:① 設計演算法。演算法設計工作是不可能完全自動化的,應學習了解已經被實踐證明是有用的一些基本的演算法設計方法,這些基本的設計方法不僅適用於計算機科學,而且適用於電氣工程、運籌學等領域;② 表示演算法。描述演算法的方法有多種形式,例如自然語言和演算法語言,各自有適用的環境和特點;③確認演算法。演算法確認的目的是使人們確信這一演算法能夠正確無誤地工作,即該演算法具有可計算性。正確的演算法用計算機演算法語言描述,構成計算機程序,計算機程序在計算機上運行,得到演算法運算的結果;④ 分析演算法。演算法分析是對一個演算法需要多少計算時間和存儲空間作定量的分析。分析演算法可以預測這一演算法適合在什麼樣的環境中有效地運行,對解決同一問題的不同演算法的有效性作出比較;⑤ 驗證演算法。用計算機語言描述的演算法是否可計算、有效合理,須對程序進行測試,測試程序的工作由調試和作時空分布圖組成。
② 什麼叫演算法
演算法,對應的英文單詞是algorithm,這是一個很古老的概念,最早來自數學領域,是用於解決某一類問題的公式和思想。
計算機科學領域的演算法,本質是一系列程序指令,用於解答特定的運算和邏輯問題。一般運用時間復雜度和空間復雜度來衡量演算法好壞。
演算法的應用領域多種多樣:
運算,例如計算兩個數的最大公約數。
查找,例如使用谷歌、網路搜索某一關鍵詞得出數據和信息。
排序:例如瀏覽電商網站時,商品按價格從低到高進行排序。
最優決策:例如游戲中讓ai角色找到迷宮的最佳路線。
參考資料:魏夢舒(@程序員小灰),《漫畫演算法:小灰的演算法之旅》:電子工業出版社,2019-05
③ 什麼叫演算法
演算法是指有基本運算及規定的運算順序所構成的完整的解題步驟。也可看成是按照要求設計好的有限、確切的計算序列,並且這樣的步驟和序列可以解決一類問題。
一個演算法應該具有以下七個重要的特徵:
①有窮性(finiteness):演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;
②確切性(definiteness):演算法的每一步驟必須有確切的定義;
③輸入項(input):一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸 入是指演算法本身定出了初始條件;
④輸出項(output):一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒 有輸出的演算法是毫無意義的;
⑤可行性(effectiveness):演算法中執行的任何計算步驟都是可以被分解為基本的可執行 的操作步,即每個計算步都可以在有限時間內完成(也稱之為有效性);
⑥高效性(high efficiency):執行速度快,佔用資源少;
⑦健壯性(robustness):對數據響應正確。
④ 演算法是什麼意思 謝謝
演算法(algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化演算法在內的一些演算法,包含了一些隨機輸入。
(4)演算法擴展閱讀:
演算法分類:
1、有限的,確定性演算法 這類演算法在有限的一段時間內終止。他們可能要花很長時間來執行指定的任務,但仍將在一定的時間內終止。這類演算法得出的結果常取決於輸入值。
2、有限的,非確定演算法 這類演算法在有限的時間內終止。然而,對於一個(或一些)給定的數值,演算法的結果並不是唯一的或確定的。
3、無限的演算法 是那些由於沒有定義終止定義條件,或定義的條件無法由輸入的數據滿足而不終止運行的演算法。通常,無限演算法的產生是由於未能確定的定義終止條件。
⑤ 什麼是演算法
演算法(algorithm)是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。一個演算法應該具有以下五個重要的特徵:演算法可以使用自然語言、偽代碼、流程圖等多種不同的方法來描述。1、有窮性(finiteness)演算法的有窮性是指演算法必須能在執行有限個步驟之後終止2、確切性(difiniteness)演算法的每一步驟必須有確切的定義;3、輸入項(input)一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;4、輸出項(output)一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;5、可行性(effectiveness)演算法中執行的任何計算步都是可以被分解為基本的可執行的操作步,即每個計算步都可以在有限時間內完成。(也稱之為有效性)計算機科學家尼克勞斯-沃思曾著過一本著名的書《數據結構十演算法= 程序》,可見演算法在計算機科學界與計算機應用界的地位。編輯本段演算法的復雜度同一問題可用不同演算法解決,而一個演算法的質量優劣將影響到演算法乃至程序的效率。演算法分析的目的在於選擇合適演算法和改進演算法。一個演算法的評價主要從時間復雜度和空間復雜度來考慮。時間復雜度演算法的時間復雜度是指執行演算法所需要的時間。一般來說,計算機演算法是問題規模n 的函數f(n),演算法的時間復雜度也因此記做t(n)=ο(f(n))因此,問題的規模n 越大,演算法執行的時間的增長率與f(n) 的增長率正相關,稱作漸進時間復雜度(asymptotic time complexity)。空間復雜度演算法的空間復雜度是指演算法需要消耗的內存空間。其計算和表示方法與時間復雜度類似,一般都用復雜度的漸近性來表示。同時間復雜度相比,空間復雜度的分析要簡單得多。詳見網路詞條"演算法復雜度"編輯本段演算法設計與分析的基本方法1.遞推法遞推法是利用問題本身所具有的一種遞推關系求問題解的一種方法。它把問題分成若干步,找出相鄰幾步的關系,從而達到目的,此方法稱為遞推法。2.遞歸遞歸指的是一個過程:函數不斷引用自身,直到引用的對象已知3.窮舉搜索法窮舉搜索法是對可能是解的眾多候選解按某種順序進行逐一枚舉和檢驗,並從眾找出那些符合要求的候選解作為問題的解。4.貪婪法貪婪法是一種不追求最優解,只希望得到較為滿意解的方法。貪婪法一般可以快速得到滿意的解,因為它省去了為找最優解要窮盡所有可能而必須耗費的大量時間。貪婪法常以當前情況為基礎作最優選擇,而不考慮各種可能的整體情況,所以貪婪法不要回溯。5.分治法分治法是把一個復雜的問題分成兩個或更多的相同或相似的子問題,再把子問題分成更小的子問題……直到最後子問題可以簡單的直接求解,原問題的解即子問題的解的合並。6.動態規劃法動態規劃是一種在數學和計算機科學中使用的,用於求解包含重疊子問題的最優化問題的方法。其基本思想是,將原問題分解為相似的子問題,在求解的過程中通過子問題的解求出原問題的解。動態規劃的思想是多種演算法的基礎,被廣泛應用於計算機科學和工程領域。7.迭代法迭代法是數值分析中通過從一個初始估計出發尋找一系列近似解來解決問題(一般是解方程或者方程組)的過程,為實現這一過程所使用的方法統稱為迭代法。編輯本段演算法分類演算法可大致分為基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法。演算法可以宏泛的分為三類:有限的,確定性演算法 這類演算法在有限的一段時間內終止。他們可能要花很長時間來執行指定的任務,但仍將在一定的時間內終止。這類演算法得出的結果常取決於輸入值。有限的,非確定演算法 這類演算法在有限的時間內終止。然而,對於一個(或一些)給定的數值,演算法的結果並不是唯一的或確定的。無限的演算法 是那些由於沒有定義終止定義條件,或定義的條件無法由輸入的數據滿足而不終止運行的演算法。通常,無限演算法的產生是由於未能確定的定義終止條件。編輯本段舉例經典的演算法有很多,如:"歐幾里德演算法,割圓術,秦九韶演算法"。編輯本段演算法經典專著目前市面上有許多論述演算法的書籍,其中最著名的便是《計算機程序設計藝術》(the art of computer programming) 以及《演算法導論》(introction to algorithms)。編輯本段演算法的歷史「演算法」即演演算法的大陸中文名稱出自《周髀算經》;而英文名稱algorithm 來自於9世紀波斯數學家al-khwarizmi,因為al-khwarizmi在數學上提出了演算法這個概念。「演算法」原為"algorism",意思是阿拉伯數字的運演算法則,在18世紀演變為"algorithm"。歐幾里得演算法被人們認為是史上第一個演算法。 第一次編寫程序是ada byron於1842年為巴貝奇分析機編寫求解解伯努利方程的程序,因此ada byron被大多數人認為是世界上第一位程序員。因為查爾斯·巴貝奇(charles babbage)未能完成他的巴貝奇分析機,這個演算法未能在巴貝奇分析機上執行。 因為"well-defined procere"缺少數學上精確的定義,19世紀和20世紀早期的數學家、邏輯學家在定義演算法上出現了困難。20世紀的英國數學家圖靈提出了著名的圖靈論題,並提出一種假想的計算機的抽象模型,這個模型被稱為圖靈機。圖靈機的出現解決了演算法定義的難題,圖靈的思想對演算法的發展起到了重要作用的。求素數的埃拉托塞尼篩法和求方根的開方的方法公式(演算法不等於公式,公式卻是提供一種演算法)
⑥ 演算法有哪些分類
演算法分類編輯演算法可大致分為:
基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法,厄米變形模型,隨機森林演算法。
⑦ 演算法是什麼
演算法(algorithm)是一系列解決問題的清晰指令,也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。
一個演算法應該具有以下五個重要的特徵:
1、有窮性:
一個演算法必須保證執行有限步之後結束;
2、確切性:
演算法的每一步驟必須有確切的定義;
3、輸入:一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定除了初始條件;
4、輸出:一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
5、可行性:
演算法原則上能夠精確地運行,而且人們用筆和紙做有限次運算後即可完成。
一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
時間復雜度
演算法的時間復雜度是指演算法需要消耗的時間資源。一般來說,計算機演算法是問題規模n
的函數f(n),演算法的時間復雜度也因此記做
t(n)=ο(f(n))
因此,問題的規模n
越大,演算法執行的時間的增長率與f(n)
的增長率正相關,稱作漸進時間復雜度(asymptotic
time
complexity)。
空間復雜度
演算法的空間復雜度是指演算法需要消耗的空間資源。其計算和表示方法與時間復雜度類似,一般都用復雜度的漸近性來表示。同時間復雜度相比,空間復雜度的分析要簡單得多。
⑧ 演算法是什麼
在數學和計算機科學中,演算法是如何解決一類問題的明確規范。
演算法可以執行計算、數據處理、自動推理和其他任務。
作為一種有效的方法,演算法可以在有限的空間和時間內用定義明確的形式語言[1] 來表示,以計算函數[2] [3] 。從初始狀態和初始輸入(可能為空)開始,[4] 指令描述了一種計算,當執行該計算時,該計算通過有限的[5] 數量的明確定義的連續狀態,最終產生的「輸出」[6] 並終止於最終結束狀態。從一種狀態到下一種狀態的轉變不一定是 明確的;一些被稱為隨機演算法的演算法包含隨機輸入。[7]
⑨ 快排演算法是什麼意思
快速排序,外文名quicksort,計算機科學,適用領域pascal,c 等語言,是對冒泡排序演算法的一種改進。
原理:
設要排序的數組是a[0]……a[n-1],首先任意選取一個數據(通常選用數組的第一個數)作為關鍵數據,然後將所有比它小的數都放到它左邊,所有比它大的數都放到它右邊,這個過程稱為一趟快速排序。
性能分析:
快速排序的一次劃分演算法從兩頭交替搜索,直到low和hight重合,因此其時間復雜度是o(n);而整個快速排序演算法的時間復雜度與劃分的趟數有關。
理想的情況是,每次劃分所選擇的中間數恰好將當前序列幾乎等分,經過log2n趟劃分,便可得到長度為1的子表。這樣,整個演算法的時間復雜度為o(nlog2n)。
以上內容參考:網路——快排演算法